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We describe and test the mathematical background for using checksum
methods to validate results returned by a numerical subroutine operating
in a fault-prone environment that causes unpredictable errors in data. We
can treat subroutines that return results satisfying a necessary condition
having a linear form — the checksum tests compliance with this necessary
condition. These checksum schemes are called algorithm-based fault toler-
ance (ABFT). Here we discuss the theory and practice of setting numerical
tolerances to separate errors caused by a fault from those inherent in finite-
precision numerical calculations.
To separate these two classes of errors, we employ well-known bounds on

error-propagation within linear algebraic algorithms. These bounds provide
a maximum error that is to be expected due to register effects; any error in
excess of this is taken to be the product of a fault. Adapting these bounds
to the ABFT setting yields a series of tests having different efficiency and
accuracy attributes.
Characteristics of a given scheme are concisely expressed using the stan-

dard receiver operating characteristic (ROC) curve. For a given error toler-
ance, a certain proportion of False Alarms (numerical errors tagged as data
faults) and Detections (data faults correctly identified) will be observed. The
ROC plots these two proportions parametrically as the tolerance is varied;
this describes the performance achievable by a certain detection scheme and
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provides a basis for choosing one scheme over others. Two series of tests are
described here. The first shows the general effectiveness of the linear ABFT
schemes we have proposed, and the second verifies the correct behavior of
our parallel implementation of them.
We close this introduction by introducing some useful notation. Matrices

and vectors are written in uppercase and lowercase roman letters; AT is the
transpose of the matrix A. Any identity matrix is always I; context provides
its dimension. A is orthogonal if AAT = I. A square matrix is a permutation
if it can be obtained by re-ordering the rows of I. The size of a vector
v is measured by its p-norm, a non-negative real number ‖v‖p; similarly
for matrices A. See [3] (hereafter abbreviated GVL), sections 2.2 and 2.3,
for the definitions. The submultiplicative property of p-norms implies that
‖AB‖p ≤ ‖A‖p‖B‖p and similarly for vectors.

1 General Considerations

In this paper we are concerned with these operations:

• Product: find the product AB = P , given A and B.

• LU decomposition: factor A as A = PLU with P a permutation
matrix, L unit lower-triangular, and U upper-triangular.

• Singular value decomposition: factor A as A = UDV T, where D is
diagonal and U and V are orthogonal matrices.

• System solution: solve for x in Ax = b when given A and b

• Matrix inverse: given A, find B such that AB = I.

Although standard linear algebra packages provide many other routines, the
ones above were identified by science application teams as the being of the
most interest, partly on the basis of amount of time spent within them.
Each of these operations has been written to emphasize that some linear

relation holds among the subroutine inputs and its computed outputs; we
call this the postcondition. For the product, system solution, and inverse,
this postcondition is necessary and sufficient, and completely characterizes
the subroutine’s task. For the other two, the postcondition is only a nec-
essary condition and valid results must enjoy other properties as well. In
either case, identifying and checking the postcondition provides a powerful
sanity check on the proper functioning of the subroutine.
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Before proceeding to examine these operations in detail, we mention two
points involved in designing ABFT techniques. Suppose for definiteness that
we plan to check one m×n matrix. Any reasonable checksum scheme must
depend on the content of each matrix entry, otherwise some entries would not
be checked. This implies that simply computing a checksum requires O(mn)
operations. Checksum ABFT schemes thus lose their attractiveness for op-
erations taking O(mn) or fewer operations (e.g. trace, sum, and 1-norm)
because it is simpler and more directly informative to achieve fault-tolerance
by repeating the computation. The second general point is that, although
the postconditions above are linearly-checkable equalities, they need not be.
For example, the largest eigenvalue of A is bounded by functions of the 1-
norm and the ∞-norm, both of which are easily computed but not linear.
One could thus evaluate the sanity of a computation by checking postcon-
ditions that involve such inequalities. None of the operations we consider
requires this level of generality.
The postconditions we consider generically involve comparing two linear

maps, which are known in factorized form

L1L2 · · ·Lp
?
= R1R2 · · ·Rq . (1)

This check can be done exhaustively via n linearly independent probes for an
n × n system. Of course, exhaustive comparison would typically introduce
about as much computation as would be required to recompute the answer
from scratch. On the other hand, a typical fault to data fans out across the
matrix outputs, and a single probe would be enough to catch most errors:

L1L2 · · ·Lpw
?
= R1R2 · · ·Rqw (2)

for some probe vector w. This is the approach originally recommended by
Abraham and his colleagues [4] to implement ABFT in systolic arrays. It
has since been extended and refined by several researchers [1, 2, 5, 7].
There are two designer-selectable choices controlling the numerical prop-

erties of such an ABFT system: the checksum weights w and the comparison

method indicated above by
?
=. When no assumptions may be made about

the operands, the first is relatively straightforward: the elements of w should
not vary greatly in magnitude so that results figure essentially equally in the
check. (In particular, w should be everywhere nonzero.) In what follows,
we let w be the vector of all ones; our implementation allows any w to be
supplied by the user.
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2 Error Propagation: Theory

After the checksum vector, the second choice is the comparison method. As
stated above, we perform comparisons using the corresponding postcondition
for each operation. To develop a test that is roughly independent of the
matrices at hand, we use the well-known bounds on error propagation in
linear operations. In what follows, we develop a test for each operation of
interest. For each operation, we cite a theorem bounding the numerical error
in the results, and then we use this bound to state a corollary defining a
test which is roughly independent of the operands. Throughout, we use u
to represent the numerical precision of the underlying hardware; it is the
difference between one and the next floating-point number larger than one.
It is important to understand that the error bounds given in the theorems

are qualitative and determine the general characteristics of roundoff in our
checksum implementations. The estimates we obtain in this section are
bounds based on worst-case scenarios, and will typically predict roundoff
error larger than practically observed. (See GVL, section 2.4.6, for more on
this outlook.) In the ABFT context, using these bounds uncritically would
mean setting thresholds too high and missing some fault-induced errors.
Their value for us, and it is substantial, is to indicate how roundoff error
scales with different inputs. This allows ABFT routines the opportunity
to factor out the inputs, yielding performance that is more nearly input-
independent. However, some problem-specific tuning will likely improve
performance. Our goal is to simplify this tuning process as much as possible.

Theorem 1 Let P̂ = mult(A,B) be computed using a dot-product, outer-
product, or gaxpy-based algorithm. The error matrix E = P̂ −AB satisfies

‖E‖∞ ≤ n‖A‖∞‖B‖∞u (3)

Proof. See GVL, section 2.4.8.

Corollary 2 An input-independent checksum test for mult is

d = P̂w −ABw (4)

‖d‖∞/(‖A‖∞‖B‖∞‖w‖∞)
>
< τu (5)

where τ is an input-independent threshold.

Remark. The test is expressed as a comparison (indicated by the
>
< relation)

with a threshold; the latter is a scaled version of the floating-point accuracy.
If the discrepancy is larger than τu, a fault would be declared, otherwise
the error is explainable by roundoff.
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Proof. The difference d = Ew so, by the submultiplicative property of norms
and theorem 1,

‖d‖∞ ≤ ‖E‖∞‖w‖∞ ≤ n‖A‖∞‖B‖∞‖w‖∞u

and the dependence on A and B is removed by dividing by their norms.
The factor of n is unimportant in this calculation, as noted in the remark
beginning the section.

For the remaining operations, we require the notion of a numerically
realistic matrix. The reliance of numerical analysts on certain proven algo-
rithms is based on the rarity of certain pathological matrices that cause, for
example, pivot elements in decomposition algorithms to grow exponentially.
Even algorithms regarded as stable and reliable can be made to misbehave
when given such unlikely inputs. Because the underlying routines will fail
under such pathological conditions, we may neglect them in designing an
ABFT system: such a computation is doomed even without faults. Ac-
cordingly, the theorems below must assume that the inputs are numerically
realistic to obtain useable error bounds.

Theorem 3 Let (P̂ , L̂, Û ) = lu(A) be computed using a standard LU de-
composition algorithm with partial pivoting. The backward error matrix E
defined by A+ E = P̂ L̂Û satisfies

‖E‖∞ ≤ 8n
3ρ ‖A‖∞u (6)

where the growth factor ρ depends on the size of certain partial results of
the calculation, and is bounded by a small constant for numerically realistic
matrices.

Proof. See GVL, section 3.4.6.

Remark. This is close to the best possible bound for the discrepancy,
because the error in simply writing down the matrix A must be of order
‖A‖u. The success of numerical linear algebra is in finding a way to factor
realistic matrices A while incurring only a small penalty ρ beyond this lower
bound.

Corollary 4 An input-independent checksum test for lu as applied to nu-
merically realistic matrices is

d = P̂ L̂Ûw −Aw (7)

‖d‖∞/(‖A‖∞‖w‖∞)
>
< τu (8)

where τ is an input-independent threshold.
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Proof. We have d = Ew so, by the submultiplicative property of norms and
theorem 3,

‖d‖∞ ≤ ‖E‖∞‖w‖∞ ≤ 8n
3ρ ‖A‖∞‖w‖∞u .

As before, the factor of 8n3 is unimportant in this calculation. For numer-
ically realistic matrices, the growth factor ρ is bounded by a constant, and
the indicated test is recovered by dividing by the norm of A.

Theorem 5 Let (Û , D̂, V̂ ) = svd(A) be computed using a standard singular
value decomposition algorithm. The forward error matrix E defined by A+
E = ÛD̂V̂ T satisfies

‖E‖2 ≤ ρ ‖A‖2u (9)

where ρ is a constant not much larger than one for numerically realistic
matrices A.

Proof. See GVL, section 5.5.8.

Corollary 6 An input-independent checksum test for svd as applied to nu-
merically realistic matrices is

d = ÛD̂V̂ Tw −Aw (10)

‖d‖2/(‖A‖2‖w‖2)
>
< τu (11)

where τ is an input-independent threshold.

Proof. We have d = Ew so, by the submultiplicative property of norms,

‖d‖2 ≤ ‖E‖2‖w‖2 ≤ ρ ‖A‖2‖w‖2u

and the dependence on A is removed by dividing by its norm. The constant
ρ is negligible for numerically realistic matrices.

Corollary 7 An input-independent checksum test for svd as applied to nu-
merically realistic matrices is

d = ÛD̂V̂ Tw −Aw (12)

‖d‖∞/(‖A‖∞‖w‖∞)
>
< τu (13)

where τ is an input-independent threshold.
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Proof. By corollary 6, the check above with the 2-norm in place of the ∞-
norm is an input-independent checksum test. But since these two norms are
equivalent in that

‖w‖∞ ≤ ‖w‖2 ≤
√
n‖w‖∞

(1/
√
n)‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞

(see GVL sections 2.2.2 and 2.3.2), the two tests are also equivalent up to
negligible constants.

Theorem 8 Let B̂ = inv(A) be computed using gaussian elimination with
partial pivoting. The backward error matrix E defined by (A + E)−1 = B̂
satisfies

‖E‖∞ ≤ 8n
3ρ ‖A‖∞u (14)

with ρ as in theorem 3.

Proof. See GVL, section 3.4.6, which defines the backwards error for the lin-
ear system solution Ax = b. Since A−1 is calculated by solving the multiple
right-hand-side problem AA−1 = I, the bound given there on ‖E‖∞ applies
here with the same growth factor ρ. (This growth factor depends only on the
pivots in the LU factorization which underlies the inverse computation.)

Corollary 9 An input-independent checksum test for inv as applied to nu-
merically realistic matrices is

d = w −AB̂w (15)

‖d‖∞/(‖A‖∞‖A
−1‖∞‖w‖∞)

>
< τu (16)

where τ is an input-independent threshold.

Proof. Note that d = ∆w where ∆ = I − A(A + E)−1. Some algebra
is necessary to extract the error E from ∆. Using the Sherman-Morrison
formula (GVL section 2.1.3) to rewrite the inverse of A+ E we obtain

∆ = I −A[A−1 −A−1(I + EA−1)−1EA−1]

= (I + EA−1)−1EA−1 (17)

For numerically realistic matrices, A dominates E and the first factor is
negligible. Heuristically, this is because E � A implies EA−1 � AA−1 = I,
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Recommended Checksum Tests

Algorithm ∆ σ1 σ2 σ3 Note

mult P̂ −AB ‖A‖‖B‖ ‖P̂‖ ‖P̂w‖ —

lu P̂ L̂Û −A ‖A‖ ‖P̂ L̂Û‖ ‖Aw‖ σ0 easier
than σ1

svd ÛD̂V̂ −A ‖A‖ ‖ÛD̂V̂ T‖ ‖Aw‖ σ0 easier
than σ1

inv I −AB̂ ‖A‖‖A−1‖ ‖A‖‖B̂‖ ‖A‖‖B̂w‖ ‖AB̂w‖
useless

Table 1: Algorithms considered here, and recommended checksum tests.

collapsing that factor to I. More formally, inverting a numerically realistic
matrix produces an error matrix E such that for any vector v, ‖Ev‖ �
‖Av‖ otherwise the backward error E would be comparable to A. Since
v is arbitrary and A is invertible, we may let v = A−1u, obtaining that
‖EA−1u‖ � ‖u‖ = ‖Iu‖, showing that the operator EA−1 is dominated by
I. Therefore we may neglect the first factor and the norm of the error is
bounded by

‖d‖∞ = ‖∆w‖∞

≤ ‖E‖∞ ‖A
−1‖∞ ‖w‖∞

≤ 8n3ρ ‖A‖∞ ‖A
−1‖∞ ‖w‖∞u (18)

using the submultiplicative property of norms. As before, the factor of
8n3 is unimportant in this calculation. Invoking the assumption that A is a
numerically realistic matrix allows us to neglect the growth factor ρ, yielding
the indicated test.

Remarks.

1. The factor ‖A‖‖A−1‖ is the condition number κ(A).

2. This bound on discrepancy, larger than that for lu, is the reason ma-
trix inverse is numerically unstable.

3 Error Propagation: Implementation

It is straightforward to transform these results into algorithms for error
detection via checksums. The principal issue is computing the desired matrix
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norms efficiently from results needed in the root calculation. For example,
in the matrix multiply, instead of computing ‖A‖‖B‖, it is more efficient
to compute ‖Ĉ‖ which equals ‖AB‖ under fault-free conditions. By the
submultiplicative property of norms, ‖AB‖ ≤ ‖A‖‖B‖, so this substitution
always underestimates the upper bound on roundoff error, leading to false
alarms. On the other hand, we must remember that the norm bounds are
only general guides anyway. All that is needed is for ‖AB‖ to scale as does
‖A‖‖B‖; the unknown scale factor can be absorbed into τ .
Taking this one step farther, we might compute ‖Ĉw‖ as a substitute

for ‖A‖‖B‖‖w‖. Here we run an even greater risk of underestimating the
bound, especially if w is nearly orthogonal to the product, so it is wise to
use instead λ‖w‖ + ‖Ĉw‖ for some problem-dependent λ. Extending this
reasoning to the other operations yields the comparisons in table 1. The
error criterion used there always proceeds from the number δ = ‖∆w‖ for
the indicated difference matrix ∆; this matrix is of course never explicitly
computed. In addition to the obvious

T0 : δ/‖w‖
>
< τu (trivial test) (19)

we provide three other comparison tests

T1 : δ/(σ1‖w‖)
>
< τu (ideal test) (20)

T2 : δ/(σ2‖w‖)
>
< τu (approximate matrix test) (21)

T3 : δ/(λ‖w‖ + σ3)
>
< τu (approximate vector test) (22)

The ideal test is the one recommended by the theoretical error bounds, and
is based on the supplied input arguments, but may not be computable. In
contrast, both approximate tests are based on computed quantities, and may
also be suggested by the reasoning above. The matrix test involves a matrix
norm while the vector test involves a vector norm and is therefore more
subject to false alarms. (Several variants of the matrix tests are available
for these operations.) We note that the obvious vector test for inv uses
AB̂w, but since B̂ = inv(A), this test becomes essentially equivalent to the
trivial test. We therefore suggest using the vector/matrix test shown in the
table.
Clearly the choice of which test to use is based on the interplay of compu-

tation time and fault-detection performance for a given population of input
matrices. Because of the shortcomings of numerical analysis, we cannot pre-
dict definitively that one test will outperform another. The experimental
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results reported in the next section are one indicator of real performance,
and may motivate more detailed analysis of test behavior. Performance in
application codes will be another criterion for choosing tests.

4 Results: Simulated Fault Conditions

In this section we show results of Matlab simulations of the proposed check-
sum tests. These simulations are intended to verify the essential effectiveness
of the checksum technique for ABFT, as well as to sketch the relative behav-
iors of the tests described above. Due to the special nature of the population
of test matrices, and the shortcomings of the fault insertion scheme, these re-
sults must not be taken as anything but an estimate of relative performance,
and a rough estimate of ultimate absolute performance.
We briefly describe the simulation setup. In essence a population of

random matrices is used as input to a given computation; faults are injected
in half these computations, and a checksum test is used to attempt to identify
the affected computations. Random test matrices A of a given condition
number κ are generated by the rule

A = 10α UDκV
T . (23)

The random matrices U and V are the orthogonal factors in the QR fac-
torization of two square matrices with normally distributed entries. The
diagonal matrix Dκ is filled in by choosing random singular values, such
that the largest singular value is unity and the smallest is 1/κ. These ma-
trices all have 2-norm equal to unity; the overall scale is set by α which is
chosen uniformly at random between -8 and +8. A total of 800 64 × 64
matrices (forty applications of the rule (23) for each κ in {21, ..., 220}) is
processed.
Faults are injected in half of these runs (400 of 800) by first choosing a

matrix to affect, and then flipping exactly one bit of its 64-bit representation.
For example, if a call to mult is to suffer a simulated fault, first A or B is
selected at random, and then one bit of A is toggled. If lu is to suffer a fault,
one of A, L, or U is selected and the fault is injected. If A was selected, one
can expect the computed L̂ and Û to have many incorrect elements; if L
was selected, only one element of the LU decomposition would be in error.
This scheme is intended to simulate errors occurring at various times within
the computation.
Next, each of the four tests described above is used to identify faults; for

a fixed τ this implies observing a certain false alarm rate and fault-detection
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Average-case Matrices, All Faults
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Figure 1: ROC for random matrices of bounded condition number, including
all faults.

rate. The pair (Pfa, Pd) may be plotted parametrically versus τ to obtain
an ROC curve which illustrates the performance achievable by a given test.
See figure 1. In these figures, T0 and T3 are the solid blue lines with dots,
with T0 in dark blue lying below T3. T2 is shown in red asterisks, and T1,
the optimal test, in green crosses.
Of course, some missed fault detections are worse than others since many

faults occur in the low-order bits of the mantissa and cause very minor
changes in the matrix. Accordingly, a second set of ROCs is shown in
figure 2. In this set, faults causing a minute perturbation (less than one part
in 10−8, about the accuracy of single-precision floating point) are screened
from the results entirely. This curve is more realistic for our applications.
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Average-case Matrices, Significant Faults
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ROC: Multiply, Excluding Faults < 1.0e−08
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|w|
|A| |w|
|Ahat| |w|
1 + |Ahat w|

Pfa

Pd

Figure 2: ROC for random matrices of bounded condition number, excluding
faults of relative size less than 10−8.

P ∗ Across Experiments

Average-Case Worst-Case
All Sig. All Sig.

mult 0.86 1.00 0.63 0.92
inv 0.78 1.00 0.32 0.50
lu 0.60 1.00 0.43 0.90
svd 0.78 0.97 0.60 0.87

Mean 0.76 0.99 0.50 0.80

Table 2: Fault detection probability when no false alarms are permitted.
Worst-case results are taken from the appendix. Results when all faults
must be detected, and when only significant faults must be detected, are
shown.
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We may make some general observations about the results. Clearly T0,
the un-normalized test, fares poorly in all experiments. This illustrates
the value of the results on error propagation that form the basis for the
normalized tests. Generally speaking,

T0� T3 < T2 ≈ T1 . (24)

This confirms theory, in which T1 is the ideal test and the others approxi-
mate it. In particular, T1 and T2 are quite similar because generally only
an enormous fault can change the norm of a matrix — these cases are easy
to detect.
Further, we note that the most relevant part of the ROC curve is when

Pfa ≈ 0; we may in fact be interested in the value P
∗, defined to be Pd when

Pfa = 0. P
∗ is the detection rate when no false alarms are permitted; it is

summarized for these experiments in table 2. The first two columns of this
table come from the data in figures 1 and 2; the other columns are from a
“worst-case” matrix population which is described in the appendix. Under
the average-case test conditions, about 99% of faults could be detected with
no false alarms; this level of performance would seem adequate for REE
purposes. In worst-case — and no science application should be in this
regime — effectiveness drops to about 80%. This shows that fault detection
will be more effective for numerically well-posed applications.

5 Results: Fault-free parallel operation

We briefly examine some characteristics of our parallel implementation of
the checksum procedures described here. Shown in figure 3 are certain ROC
curves for the four operations we have considered. In contrast to the results
just reviewed, these curves were generated by checking Scalapack computa-
tions with Matlab.1 In this test we use randomly perturbed matrices from
the Matlab gallery selection (see equation (25) in the appendix). These ma-
trices are generally ill-conditioned or poorly scaled, but serve as a demanding
test set to check our routines against a known standard. In this case, for
simplicity, the overall scale parameter α = 0 and a fixed perturbation scale
ε = 10−10 was used.
This time, identical matrix operands are given to Matlab and to our

Scalapack implementation. Faults are not injected by modifying operands

1Matlab uses LINPACK ZGEDI/ZGEFA for inv and lu, and ZSVDC for svd. For mult,
Matlab uses a straightforward inner product implementation with nested loops. [6]

13



ROC: Testing Parallel Operation
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ROC plot for inversion of 1.0e−10 perturbed gallery matrices
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ROC plot for LU decomposition of 1.0e−10 perturbed gallery matrices
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ROC plot for singular value decomposition of 1.0e−10 perturbed gallery matrices

Figure 3: Parallel implementation checked by Matlab computation.

because our objective is to verify the correct numerical operation of our sub-
routines. Each system computes the full result matrix; these are combined
with the Scalapack checksum comparison to form an ROC as follows. We
declare that an error has occurred when the two full results differ by more
than a fixed tolerance (10−10 in these experiments). An error is declared
to have been detected or not according to whether a checksum discrepancy
was found by the Scalapack implementation. (The Matlab implementation
does not compute a checksum; it is used only to find the full result matrix.)
With these definitions, a false alarm, for example, means that Scalapack
found a checksum discrepancy, but no significant discrepancy was present in
the result of the computation. The ROC thus serves as a check, via Matlab,
on the numerical characteristics of our Scalapack implementation. In doing
these tests, the comparison rule T0 was used; this has smaller consequences
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than in the previous section because most of the perturbed gallery matrices
have roughly unit norm.
These curves were generated by sweeping the threshold τ used in the

Scalapack T0 test from 0 to ∞. It is clear from the curves that there is
excellent agreement between the Scalapack and Matlab versions of mult,
lu, and svd. Indeed, when the matrix is badly scaled, ill-conditioned, or
numerically unrealistic — causing Scalapack and Matlab to differ according
to the full answer — Scalapack finds the error in the checksum calculation
also. In essence, the message is: if the computation did not succeed, the
checksum test discovers it. Because of the additional instability of the inverse
algorithm, its results are less definite. One explanation is that the checksum
test is missing some errors that occur in the computed inverse; this needs
further investigation.

6 Conclusions

Theoretical results bounding the expected roundoff error in a given compu-
tation provide several types of input-independent threshold tests for check-
sum differences. The observed behavior of these tests is in good general
agreement with theory, and readily computable tests are easy to define.
All operations considered here (mult, lu inv, and svd) admit tests that
are effective in detecting faults at the 99% level on typical matrix inputs.
The base computations have been successfully implemented in parallel using
Scalapack.

7 Appendix: Worst-case testing

Forty matrices from the Matlab “gallery” command (see table 3) are the ba-
sis for worst-case testing; these matrices are often ill-conditioned and badly
scaled. Moreover, some members of this population deliberately violate the
“numerically realistic” condition (see section 2) on which our tests are based.
Given a matrix G from this set, a test matrix A is generated by the rule

A = 10α(G+ εR) (25)

where R is a square perturbation matrix of uniform random numbers be-
tween −1 and +1. The perturbation adjustment ε is stepped logarithmi-
cally from 10−10 to 10−4, providing matrices progressively farther from the
gallery set. The overall scale factor compensates for the fact that many of
the gallery matrices are themselves scaled to have roughly unit norm; α is
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Worst-case Matrices, All Faults
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Figure 4: ROC for random worst-case matrices, including all faults

chosen uniformly at random between -8 and +8. A total of 800 64 × 64
matrices (20 perturbations of each of 40 gallery base matrices) is processed.
Apart from this modified population, the experimental setup is just as de-
scribed in section 4; the ROC curves in this appendix (figures 4 and 5) are
directly comparable with the earlier ones.
We first note the anticipated loss in fault-detection performance, roughly

of about 10-50%. The primary cause of this effect is probably the amplifi-
cation of some floating-point roundoff errors into the status of fault-induced
errors; another factor may be a breakdown of our error bounds, which are
only approximate, for this difficult class of matrices. We note the superiority
of the normalized tests, and that the ranking of tests observed in the average
case, equation (24), is also seen here. We also see a decisive superiority of
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Worst-case Matrices, Significant Faults
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Figure 5: ROC for random worst-case matrices, excluding faults of relative
size less than 10−8.

T1 over T2 in the mult curves (upper-left panel of both figures).
Referring to the results for significant faults only, multiply, LU decom-

position, and SVD have P ∗ ≈ 0.9, which is quite favorable. The inverse,
however, has P ∗ ≈ 0.5, which is no doubt partly due to the numerical insta-
bility of inversion relative to the factorizations. Nonetheless, it would be of
interest to locate the source of these missed faults, and perhaps to develop
an improved test.

17



Name log10 κ Description

cauchy 19.5 Cauchy matrix
chebspec 15.4 Chebyshev spectral differentiation matrix
chebvand 17.4 Vandermonde-like matrix for Chebyshev polynomials
chow ∞ Chow matrix (singular Toeplitz lower Hessenberg)
circul 1.8 Circulant matrix
clement 10.0 Clement matrix
condex 2.0 Counter-examples to condition number estimators
cycol 49.7 Matrix whose columns repeat cyclically
dramadah 16.1 Zero/one matrix whose inverse has large integers
fiedler 3.5 Fiedler matrix
forsythe 7.8 Forsythe matrix (perturbed Jordan block)
frank 18.3 Frank matrix
gearmat 17.4 Gear matrix
grcar 0.5 Grcar matrix
hanowa 1.4 Matrix whose eigenvalues lie on a vertical line
invhess 2.9 Inverse of an upper Hessenberg matrix
invol 34.7 Involutory matrix
jordbloc 1.9 Jordan block
kahan 11.0 Kahan matrix
kms 1.0 Kac-Murdock-Szego Toeplitz matrix
krylov ∞ Krylov matrix
lehmer 3.6 Lehmer matrix
lesp 1.6 Tridiagonal matrix with real, sensitive eigenvalues
lotkin 20.4 Lotkin matrix
minij 3.8 Symmetric positive definite matrix min(i, j)
moler 17.1 Moler matrix (symmetric positive definite)
neumann 16.0 Singular matrix from the discrete Neumann problem
orthog 0.0 Orthogonal and nearly orthogonal matrices
parter 0.5 Parter matrix (Toeplitz with singular values ≈ π)
pei 1.8 Pei matrix
prolate 16.8 Prolate matrix (symmetric, ill-conditioned Toeplitz)
rando 2.6 Random matrix with elements -1, 0 or 1
randhess 0.0 Random, orthogonal upper Hessenberg matrix
randsvd 7.8 Random matrix with pre-assigned singular values
redheff 2.8 Redheffer matrix
riemann 2.4 Matrix associated with the Riemann hypothesis
ris 0.5 Symmetric Hankel matrix
toeppd 4.2 Symmetric positive definite Toeplitz matrix
tridiag 3.2 Tridiagonal matrix (sparse)
triw 18.6 Upper triangular matrix of Wilkinson and others

Table 3: Matrices from the Matlab gallery used in testing.
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